Pyrogenic carbon degradation by galvanic coupling with sprayed seawater microdroplets
ID:1232 Poster Presentation

2025-01-14 21:05 (China Standard Time)

Session:Session 25-IGAC-SOLAS: Chemistry and Physics at Surface Ocean and Lower Atmosphere

Abstract
Surface waves are known for their mechanical role in coastal processes that influence the weather and climate. However, their chemical impact, particularly on the transformation of pyrogenic carbon, is poorly understood. Pyrogenic carbon is generally assumed to show negligible postformational alteration of its stable carbon isotope composition. Here we present an electrochemical interaction of pyrogenic carbon with the sprayed seawater microdroplets resulting from wave breaking, driven by the galvanic coupling between the microdroplet water−carbon interfaces and the microdroplet water-vapor interfaces. This enables refractory pyrogenic carbon to rapidly degrade via the oxygenation and mineralization reaction, which makes it ∼2.6‰ enriched in 13C, far exceeding the generally assumed postformation alteration values (<0.5‰) of pyrogenic carbon. The unique chemical dynamics of seawater microdroplets provide new insights into the discrepancy in carbon isotope signatures between riverine and marine black carbon, emphasizing the potential of coastal oceans for carbon sequestration in the global carbon cycle.
 
Keywords
surface wave, pyrogenic carbon, carbon cycle
Speaker
Rui Bao
Professor, Ocean University of China

Author
锐包 Rui Bao 中国海洋大学 / Ocean University of China